
Session 2
Introduction to Programming - Continued

✓ Structure of a Program
✓ Variables and Types
✓ Keywords

Structure of a Program
In the previous session we compared a program to a recipe, a series of steps that must

be followed in order. Just like a recipe a computer program is a series of steps that are

followed in order, from top to bottom. Our programs are read by a computer in the same

way, from top to bottom. In a computer program we call these lines instructions or

statements. Most programming languages have a special character that defines the end

of a statement, in C based languages it is a semi-colon. See below for an example of a

statement.

this could be a statement;

this would be another statement;

Programming languages have very strict rules defining their structures, this makes it

easier for the computer to read and understand the program. A clear structure also

means that other programmers can easily pick up and understand other people's code.

These strict rules can often trip up new programmers, things will 'look right' but not

work as expected. Stick with it and team up with a more experienced programmer who

has already been tripped up by these common situations.

 Exercise
Let's get started with your first program!

In this course we will be using the Python programming language. Follow the instructions on

this website for getting a Python interpreter installed on your system. https://

https://www.python.org/about/gettingstarted/

www.python.org/about/gettingstarted/, there is plenty of documentation and help available

at the Python website so if you are having trouble getting things running you should check

the website's help sections https://docs.python.org/2/index.html.

As well as getting Python installed you should get a text editor that is designed to help you

code. For this course we recommend something simple such as Notepad++ (http://

www.notepad-plus-plus.org/) or Sublime Text (http://www.sublimetext.com/). From this point

on we will assume that you have a working text editor and are able to run Python programs

from the command line.

Ok, your first program should always be a hello world program. In Python this is extremely

simple, you probably will remember it from the previous chapter.

print "Hello, world!"

Put that into a file and save it as Exercise_1.py then run it, you should see the following

happen.

Congratulations! That's your first program done, if you keep following the exercises you'll be

writing mobile applications, computer games and more in no time!

Variables and Types
As previously discussed a program is a collection of instructions, during the running of a

program it's very likely that the programmer will want to store data in between

instructions. For example the program might want to store the name of the person who

is running it; we store these bits of information in variables. Variables are temporary

stores of information, they exist for the life time of the program. What we mean by this

is that a variable has to be loaded each time the program is run, it is not stored on your

https://www.python.org/about/gettingstarted/
https://docs.python.org/2/index.html
http://www.notepad-plus-plus.org/
http://www.notepad-plus-plus.org/
http://www.sublimetext.com/

computer when the program ends. Variables can be stored by writing them to something

more permanent such as a text file or a database. Variables are given names to describe

them, this means that the program can access the contents of a variable by using the

variable name. Think of it like a label on a tin, you find a tin that says soup for example

and inside that tin is the actual soup, the type of soup could be completely different but

it comes under the soup variable name. Let's take a look at some example variables -

name = "Jack"
name = "George"

In the above example the variable name is 'name' and the contents of that variable is

'Jack' or 'George'.

 Note
A variable can only contain one value, the variable 'name' can only contain 'Jack' or 'George'

but not both at the same time.

We have established that variables are containers of data, the next thing to learn is that

data in computer programs all have types. A type describes what the data is, such as text

or a number or a decimal number. The type of a variable is more important in some

languages than others. In Python the type of a variable is generally not something to

worry about. Let's look at some different variables that contain different types of data.

name = "Jack" // string
height = 182 // integer
weight = 78.5 // float

The previous example shows three different types. A string, an integer and a float. These

are the three main data types that are common amongst all languages. Different

languages will also define additional types that will be more complicated than the ones

described here.

 Exercise
In this exercise you are going to write a program that contains variables. You will fill these

variables from the within the program and then print them out to the user. Enter the

following program into a file and save it as Exercise_2.py, run the program to see the output.

name = "Jack"
height = 182
weight = 78.5

print "My name is {0} and I am {1}cm tall and weigh {2}
kg.".format(name, height, weight)

 Note
Take note that the print statement should be written on one line, there is no line break after

the {2}. Change the variables to describe your self and people that you know. See how you

can only have one value at a time in each variable.

You may have encountered variables in mathematics, for example x and y are frequently

used to represent unknown numbers. Variables in programming can be used in

combination with mathematical operators to produce new values. The basic arithmetic

operators (addition, subtraction, multiplication and division) are supported in all

programming languages. Some examples can be seen below, see if you can calculate

what the program will output before running it.

x = 10
y = 5

print x + y # addition
print x - y # subtraction
print x * y # multiplication
print x / y # division

We have talked about some data types that you will likely recognise but there is another

very common data type that will be used throughout. The boolean data type represents

a true or false value. We will frequently use boolean values to compare two variables, if

they match then it is true, if they do not match then it is false. As well as comparing

values to see if they match you can use boolean operators to compare two values to see

if one is greater than or less than the other, these are called relational operators. An

example of boolean comparison is shown below.

 Note
In the comparison it is comparing the value inside the variable and not the variable name

itself.

x = 10
y = 5

print x is x
print x is y

Boolean conditionals are the same as you will have seen in mathematics. The operators

are the greater than (>) sign, less than (<) sign, equals sign (==) and the not equals sign (!

=). Take note that the equality conditional is a double equals sign, the single equals sign

is used to assign values to variables. The greater than and less than operators can be

combined with an equals sign to make them greater than or equal to (>=) and less than

or equal to (<=). These symbols are summarised in the table below.

Less than <

Less than or equal to <=

Greater than >

Greater than or equal to >=

Equal to ==

Not equal to !=

Keywords
Keywords are special words in a programming language that form the structure of a

program. Key`words cannot be used as variable names, for example if is a commonly

used keyword in programming languages but x is not, so you could have a variable

called x but not if.

In our example programs we have already seen a common keyword - print is a very

useful keyword that writes the string after the keyword out to the command line. Print

will be one of the most used keywords in this course.

Keywords can be used to control the flow of our program through the boolean logic

operators if and else. If is a common keyword that you will see in most languages, it

allows certain parts of code to be run if a certain condition is true; the optional else is

the second part of an if-else block and it defines a piece of code that will be run if the if

condition is false. This might seem complicated at first but remember that if-else blocks

simply run on true or false and switch the flow of the program based on that. The next

session will focus on the if-else conditional.

