
1



2



SVN, perforce etc. store changes as a series of deltas from the beginning of the repo, 
git uses snapshots of every file at the point of commit. If no files have changed then 
the previous pointer for that file is used otherwise a new pointer is made and 
updated.

This means that in git all operations become pointer operations, for example 
checking out a specific version of a file is just grabbing the snapshot pointed to by the 
pointer. Creating a branch is creating a new snapshot based on a pointer (writing 40 
bytes to a file)

3



A git project is entirely self contained, no communication with a central server is 
required at all. This means that operations such as diff against any point in time can 
be done offline/locally with a huge speed advantage.

Every clone of a git repository is a backup of the master as long as it is kept up to 
date.

4



One of the biggest advantages over other version control systems is the ability to 
cheaply create branches, this encourages new workflows that move away from a rigid 
central repository workflow.

Branches can be merged with other branches relatively easily, even if the other 
branch has changed and modified existing files. Merging in git is usually automatic 
and painless (not always though).

Using branches as features

5



6



Git pull –rebase master will avoid having to do a separate merge commit. Always a 
good idea to do a pull before pushing otherwise you will likely get merge conflicts. 

7



Use branches whenever you want to work on new features, this gives you versioned 
code without having to pollute master. Master should represent a working snapshot 
of code. Allows for sharing of feature branches.

Can implement some sort of code review before anything is merged back into master 
by using pull requests.

8



9



10


